MinMaxNormalize规一化算法
public class MinMaxNormalize {
/**
* 线性归一化 公式:X(norm) = (X - min) / (max - min)
*
* @param points 原始数据
* @param conversion 是否行转列
* @return 归一化后的数据
*/
public static double[] normalize(double[][] points, boolean conversion) {
if (points == null || points.length < 1) {
return new double[0];
}
//新数组
double[][] newPoints = new double[points[0].length][points.length];
if (conversion) {
for (int i = 0; i < points.length; i++) {
for (int j = 0; j < points[i].length; j++) {
newPoints[j][i] = points[i][j];
}
}
} else {
newPoints = points;
}
Arrays.stream(newPoints).forEach(val -> {
log.info("newPoints val:{}", val);
});
double[][] p = new double[newPoints.length][newPoints[0].length];
for (int j = 0; j < newPoints[0].length; j++) {
for (int i = 0; i < newPoints.length; i++) {
p[i] = minMax(newPoints[i]);
}
}
Arrays.stream(p).forEach(val -> {
log.info("p val:{}", val);
});
double[] sumArry = Arrays.stream(p).mapToDouble(val -> Arrays.stream(val).sum()).toArray();
double[] norArry = proportion(sumArry);
log.info("norArry:{}", norArry);
return norArry;
}
private static double[] minMax(double[] points) {
double[] p = new double[points.length];
double maxV = maxV(points);
double minV = minV(points);
for (int i = 0; i < points.length; i++) {
p[i] = maxV == minV ? minV : (points[i] - minV) / (maxV - minV);
}
return p;
}
private static double[] proportion(double[] points) {
double[] p = new double[points.length];
double sumNum = Arrays.stream(points).sum();
log.info("sumNum:{}", sumNum);
for (int i = 0; i < points.length; i++) {
p[i] = NumberUtil.round(points[i] / sumNum, 3).doubleValue();
}
return p;
}
/**
* 获取矩阵的某一列
*
* @param points points
* @param column column
* @return double[]
*/
public static double[] getMatrixCol(double[][] points, int column) {
double[] matrixJ = new double[points.length];
for (int i = 0; i < points.length; i++) {
matrixJ[i] = points[i][column];
}
return matrixJ;
}
/**
* 获取数组中的最小值
*
* @param matrixJ matrixJ
* @return v
*/
public static double minV(double[] matrixJ) {
return Arrays.stream(matrixJ).min().getAsDouble();
}
/**
* 获取数组中的最大值
*
* @param matrixJ matrixJ
* @return v
*/
public static double maxV(double[] matrixJ) {
return Arrays.stream(matrixJ).max().getAsDouble();
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
编辑 (opens new window)
上次更新: 2024-12-06, 10:03:39